Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cancer Res ; 84(2): 276-290, 2024 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-37890164

RESUMO

Heat shock factor 1 (HSF1) is a stress-responsive transcription factor that promotes cancer cell malignancy. To provide a better understanding of the biological processes regulated by HSF1, here we developed an HSF1 activity signature (HAS) and found that it was negatively associated with antitumor immune cells in breast tumors. Knockdown of HSF1 decreased breast tumor size and caused an influx of several antitumor immune cells, most notably CD8+ T cells. Depletion of CD8+ T cells rescued the reduction in growth of HSF1-deficient tumors, suggesting HSF1 prevents CD8+ T-cell influx to avoid immune-mediated tumor killing. HSF1 suppressed expression of CCL5, a chemokine for CD8+ T cells, and upregulation of CCL5 upon HSF1 loss significantly contributed to the recruitment of CD8+ T cells. These findings indicate that HSF1 suppresses antitumor immune activity by reducing CCL5 to limit CD8+ T-cell homing to breast tumors and prevent immune-mediated destruction, which has implications for the lack of success of immune modulatory therapies in breast cancer. SIGNIFICANCE: The stress-responsive transcription factor HSF1 reduces CD8+ T-cell infiltration in breast tumors to prevent immune-mediated killing, indicating that cellular stress responses affect tumor-immune interactions and that targeting HSF1 could improve immunotherapies.


Assuntos
Neoplasias da Mama , Proteínas de Ligação a DNA , Humanos , Feminino , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Neoplasias da Mama/patologia , Fatores de Transcrição de Choque Térmico/genética , Linhagem Celular Tumoral , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Quimiocina CCL5/genética , Quimiocina CCL5/metabolismo
2.
Anal Chem ; 95(45): 16710-16716, 2023 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-37916500

RESUMO

Extracellular vesicles (EVs) are cell-derived, naturally produced, membrane-bound nanoscale particles that are linked to cell-cell communication and the propagation of diseases. Here, we report the design and testing of in-plane nanofluidic devices for resistive-pulse measurements of EVs derived from bovine milk and human breast cancer cells. The devices were fabricated in plane with three nanopores in series to determine the particle volume and diameter, two pore-to-pore regions to measure the electrophoretic mobility and zeta potential, and an in-line filter to prevent cellular debris and aggregates from entering the nanopore region. Devices were tested with and without the channels coated with a short-chain PEG silane to minimize electroosmotic flow and permit an accurate measurement of the electrophoretic mobility and zeta potential of the EVs. To enhance throughput of EVs, vacuum was applied to the waste reservoir to increase particle frequencies up to 1000 min-1. The nanopores had cross-sections 200 nm wide and 200 nm deep and easily resolved EV diameters from 60 to 160 nm. EVs from bovine milk and human breast cancer cells had similar particle size distributions, but their zeta potentials differed by 2-fold, -8 ± 1 and -4 ± 1 mV, respectively.


Assuntos
Neoplasias da Mama , Vesículas Extracelulares , Nanoporos , Humanos , Feminino , Eletroforese , Eletro-Osmose
3.
FEBS J ; 289(13): 3876-3893, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35080342

RESUMO

The heat stress response activates the transcription factor heat shock factor 1 (HSF1), which subsequently upregulates heat shock proteins to maintain the integrity of the proteome. HSF1 activation requires nuclear localization, trimerization, DNA binding, phosphorylation and gene transactivation. Phosphorylation at S326 is an important regulator of HSF1 transcriptional activity. Phosphorylation at S326 is mediated by AKT1, mTOR, p38, MEK1 and DYRK2. Here, we observed activation of HSF1 by AKT1 independently of mTOR. AKT2 also phosphorylated S326 of HSF1 but showed weak ability to activate HSF1. Similarly, mTOR, p38, MEK1 and DYRK2 all phosphorylated S326 but AKT1 was the most potent activator. Mass spectrometry showed that AKT1 also phosphorylated HSF1 at T142, S230 and T527 in addition to S326, whereas the other kinases did not. Subsequent investigation revealed that phosphorylation at T142 is necessary for HSF1 trimerization and that S230, S326 and T527 are required for HSF1 gene transactivation and recruitment of TFIIB and CDK9. Interestingly, T527 as a phosphorylated residue has not been previously shown and sits in the transactivation domain, further implying a role for this site in HSF1 gene transactivation. This study suggests that HSF1 hyperphosphorylation is targeted and these specific residues have direct function in regulating HSF1 transcriptional activity.


Assuntos
Proteínas de Ligação a DNA , Fatores de Transcrição , Proteínas de Ligação a DNA/metabolismo , Fatores de Transcrição de Choque Térmico/genética , Fatores de Transcrição de Choque Térmico/metabolismo , Fosforilação , Serina-Treonina Quinases TOR/genética , Fatores de Transcrição/metabolismo , Ativação Transcricional
4.
J Cardiovasc Dev Dis ; 7(4)2020 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-33022937

RESUMO

In the last two decades, the zebrafish has emerged as an important model species for heart regeneration studies. Various approaches to model loss of cardiac myocytes and myocardial infarction in the zebrafish have been devised, and have included resection, genetic ablation, and cryoinjury. However, to date, the response of the zebrafish ventricle to cautery injury has not been reported. Here, we describe a simple and reproducible method using cautery injury via a modified nichrome inoculating needle as a probe to model myocardial infarction in the zebrafish ventricle. Using light and electron microscopy, we show that cardiac cautery injury is attended by significant inflammatory cell infiltration, accumulation of collagen in the injured area, and the reconstitution of the ventricular myocardium. Additionally, we document the ablation of cardiac nerve fibers, and report that the re-innervation of the injured zebrafish ventricle is protracted, compared to other repair processes that accompany the regeneration of the cauterized ventricle. Taken together, our study demonstrates that cautery injury is a simple and effective means for generating necrotic tissue and eliciting a remodeling and regenerative response in the zebrafish heart. This approach may serve as an important tool in the methods toolbox for regeneration studies in the zebrafish.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...